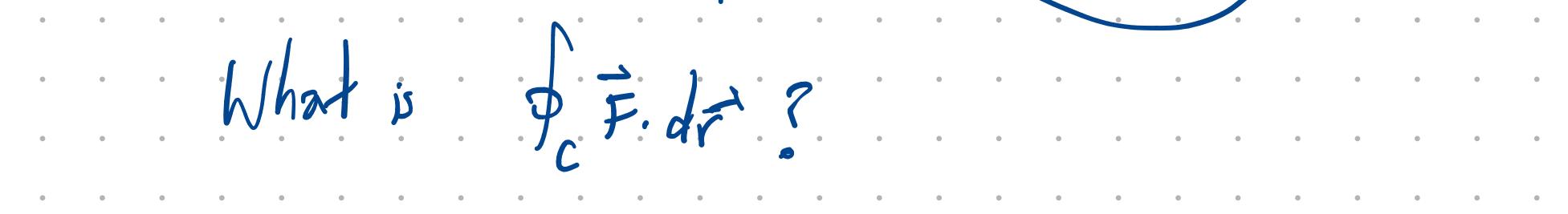
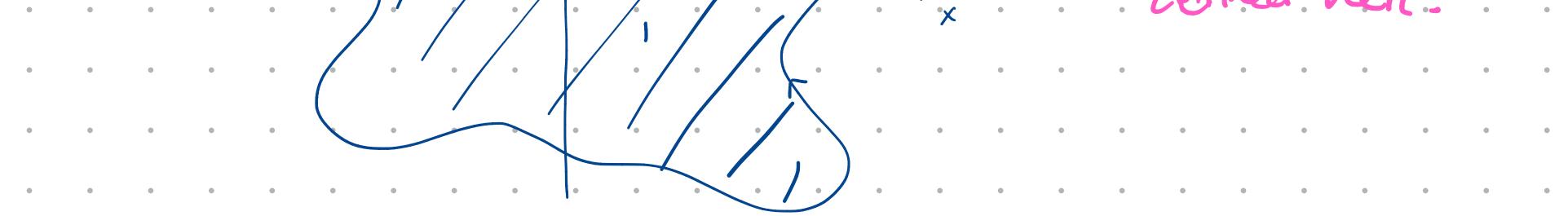
Stavart p.1150 #38 $Let \vec{F} = \frac{(2x^3 + 2xy^2 - 2y)\hat{i} + (2y^3 + 2xy + 2x)\hat{j}}{(2y^3 + 2xy + 2x)\hat{j}}$ 12. = (P,Q) where $P = \frac{2x^3 + 2xy^2 - 2y}{x^2 + y^2}$ $Q = \frac{2g^3 + 2xg + 2x}{2g^2 + 2xg}$ • • • • • • •

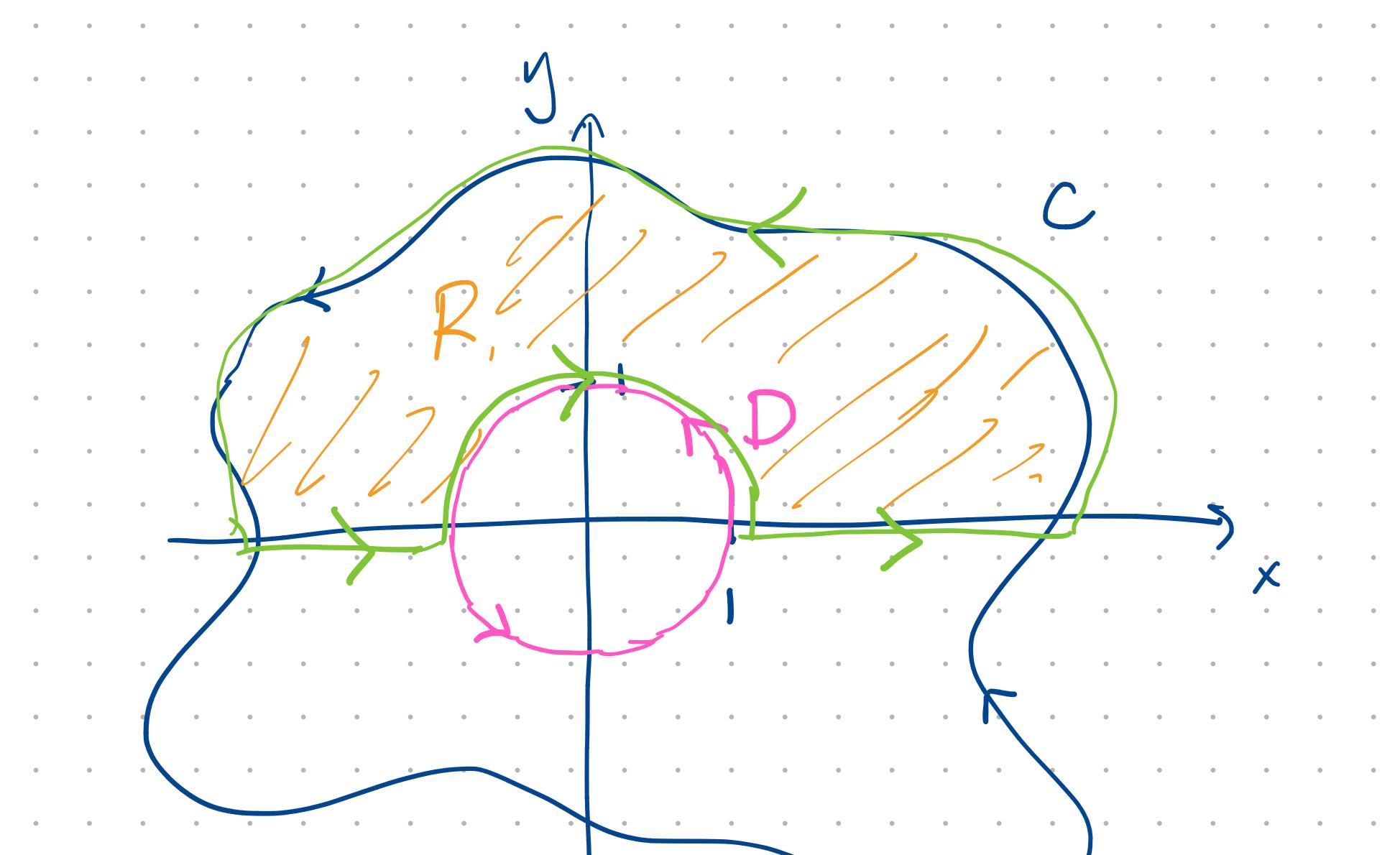
· · · · · · · · · · · · · · · · · · ·	$\cdot \cdot $
· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • •
	• • • • • • • • • • • •
• • • • • • • • • • •	• • • • • • • • • • • • • •
	· · · · · · · · · · · · · · · · · · ·
	• • • • • • • • • • • • • •
	· · · · · · · · · · · · · · · · · · ·
	• • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • •
• • • • • • • • • • •	



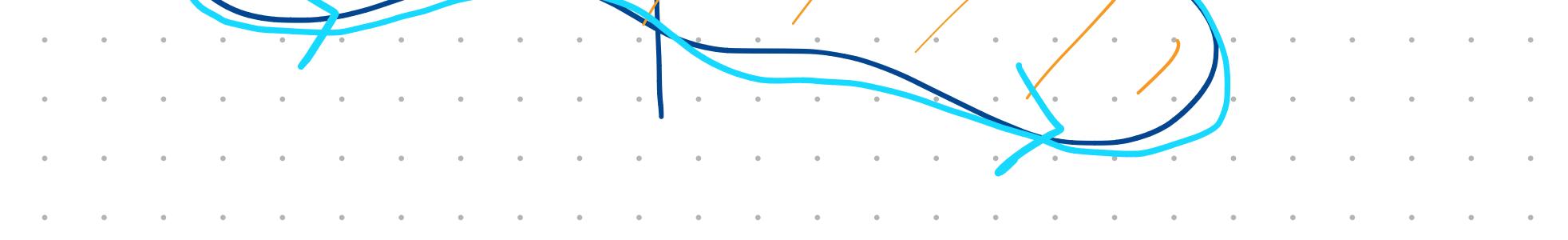
First thought: this problem boks impossible, b/c ne don't know what exactly the curve C is. Second thought: Maybe C doesn't matter b/c F is conservative (parth-independent) so $\oint_{C} \vec{F} \cdot d\vec{r} = 0$. So along this train of thought we compute Qx-Py Turns ont Qx-Py=0 (check!!) Altowever, ne cannot conclude Fis conservative since domain (F) = R²-(0,0) is not simply conn. Similarly ne can't apply Green's Thin to b/c F not defined here.



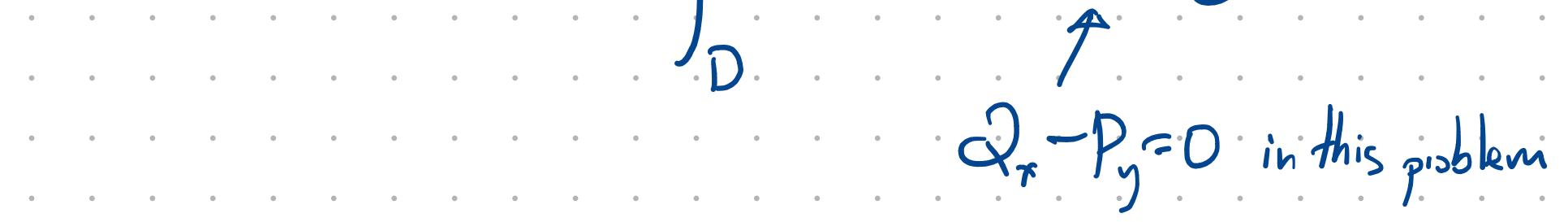
(For the following, refer to Example 5 in 16.4 and the discussion preceding it.) Key iden : Apply Green's Thm. to R instead.



	• • • • • • • • • • • • • •
· · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • •



Claim: Boundary of R = C together with (positively oriented) Notation: 2R -D' (reverse of D) Explanation: unit circle CCW unit circle CW OR = $\partial R_2 = (1 + 1)$ together: $\partial R = \sqrt{Q}$ $\oint \vec{F} \cdot d\vec{r} + \oint \vec{F} \cdot dr = \iint (Q_x - P_y) dredy$ R $= -\phi F \cdot dr$



Rezervinge. actually know this curve! Non want integral of $\frac{1}{F} = \left(\frac{2x^{3} + 2xy^{2} - 2y}{x^{2} + y^{2}}, \frac{2y^{3} + 2x^{2}y + 2x}{x^{2} + y^{2}} \right)$ • • • • • • • $\partial n = D$: $(x^2 + y^2 = 1)$. •

 $\oint \left(\frac{2x^3 + 2xy^2 - 2y}{x^2 + y^2}, \frac{2y^3 + 2x^2y + 2x}{x^2 + y^2}, \frac{1}{x^2 + y^2} \right) \cdot dr$ 2^2 $3 \pm \eta = 1$ $= \oint \left\{ 2x^3 + 2xy^2 - 2y, 2y^3 + 2x^2y + 2x^$ · , . I can actually use Green's thin now! = $\iint ((4xy+2) - (4xy-2)) dxdy$ $= \iint \mathcal{A} \operatorname{dix} \operatorname{diy} = \mathcal{A} \operatorname{Arez} \operatorname{dig}$ $\chi^{2} + \eta^{2} \leq 1$ $= \iint \mathcal{A} \operatorname{dix} \operatorname{dix} = \mathcal{A} \operatorname{Arez} \operatorname{dig}$

